Contents
Tutoriais de Linguagem R e de RStudio
Tutoriais Básicos de RP com R
Exemplos Básicos de Código
Código para ler uma planilha em CSV para dentro de R:
read.csv(“nome-do-arquivo”, header = TRUE, sep = ",")
kNN e outras Métricas de Distância
- k-nearest neighbors::Machine Learning in R for beginners de Karlijn Willems
- KNN example in R de Ranjit Mishra
- Your First Machine Learning Project in R Step-By-Step (supostamente um tutorial para ML usando estatística de machinelearningmastery.com, mas na verdade ensina o básico com bons exemplos – use já!)
Voronoi, Delaunay e Tesselação

Diagrama de voronoi criado com os pacotes deldir e ggplot2 em R do tutorial de
- Voronoi Diagram and Delaunay Triangulation in R By Nathan Yau (usa deldir)
- Creating Voronoi Diagrams with ggplot2 de Phillip Johnson (usa deldir)
- Manual do pacote deldir para Delaunay Triangulation and Dirichlet (Voronoi) Tessellation
- CRAN package deldir: Delaunay Triangulation and Dirichlet (Voronoi) Tessellation
- Voronoi polygons with R de Carson Farmer (usa deldir, sp e rgdal)
- Voronoi Treemaps in R de Paul Murrell da University of Auckland, Department of Statistics (apresenta um enfoque um pouco diferente)
- Distância de Mahalanobis: Veja nossa página de Estatística
Pacotes de R
Pacotes mais usados de R de acordo com o CRAN daily downloads:
- e1071 Functions for latent class analysis, short time Fourier transform, fuzzy clustering, support vector machines, shortest path computation, bagged clustering, naive Bayes classifier etc
- rpart Recursive Partitioning and Regression Trees.
- igraph A collection of network analysis tools.
- nnet Feed-forward Neural Networks and Multinomial Log-Linear Models.
- randomForest Breiman and Cutler’s random forests for classification and regression.
- caret package (short for Classification And REgression Training) is a set of functions that attempt to streamline the process for creating predictive models.
- kernlab Kernel-based Machine Learning Lab.
- glmnet Lasso and elastic-net regularized generalized linear models.
- ROCR Visualizing the performance of scoring classifiers.
- gbm Generalized Boosted Regression Models.
- party A Laboratory for Recursive Partitioning.
- arules Mining Association Rules and Frequent Itemsets.
- tree Classification and regression trees.
- klaR Classification and visualization.
- RWeka R/Weka interface.
- ipred Improved Predictors.
- lars Least Angle Regression, Lasso and Forward Stagewise.
- earth Multivariate Adaptive Regression Spline Models.
- CORElearn Classification, regression, feature evaluation and ordinal evaluation.
- mboost Model-Based Boosting.