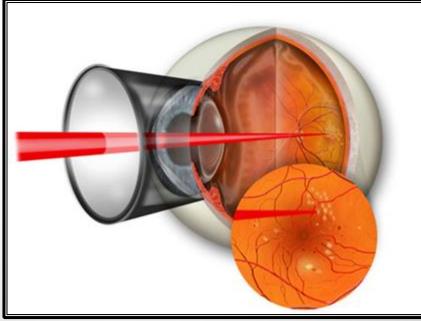
MICCAI TUTORIAL - VTR 2013

VIEW EXPANSION AND AUGMENTED REALITY IN SLIT-LAMP RETINAL IMAGING

Rogério de Almeida Richa

SUMMARY

- Introduction and motivation
- Objective
- Extracting the retina
- Tracking the retina
- Computational aspects
- Current results
- Future work


INTRODUCTION

Retina treated with laser

PÁGINA 2

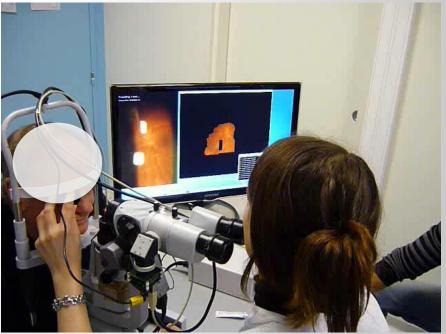
Panretinal photocoagulation as treatment for proliferative diseases such as diabetic retinopathy

[www.institutdeloeil.com]

Rogerio Richa LAPIX

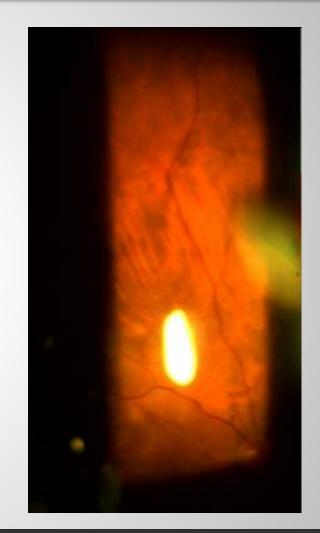
THE SLIT LAMP

 The slit lamp is one of the most commonly used devices for laser delivery


- The slit-lamp is essentially a biomicroscope coupled with a high-intensity light source
- The laser is coupled to the slit-lamp

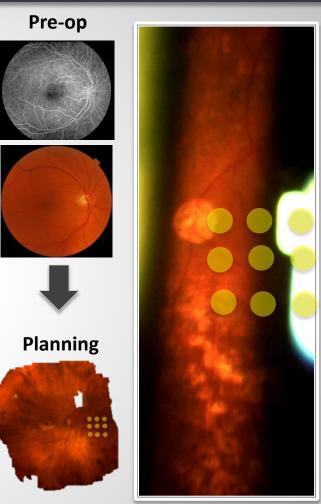
THE SLIT LAMP

 The slit lamp is one of the most commonly used devices for laser delivery



THE SLIT LAMP

 The slit lamp is one of the most commonly used devices for laser delivery



COMPUTER ASSISTANCE

- Computer assistance has the potential to improve
 - Navigation
 - Planning
 - Documentation
 - Diagnosing

PÁGINA 6

Practitioner and patient comfort

🕞 INCoD

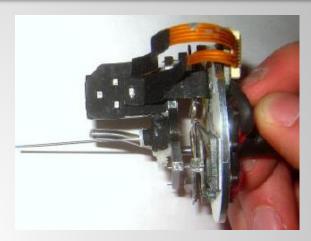
OBJECTIVE

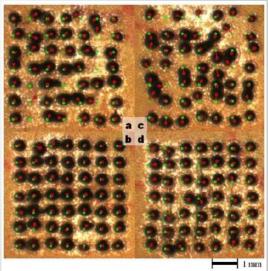

- The fundamental enabling technology:
 Intra-operative retina tracking and mapping
- Research goals
 - Create na intra-operative mosaic of the retina from slit lamp video
 - Pre-operative information overlay
- Challenges
 - Reflections
- Poor texture
- Narrow slit
 Accuracy

BACKGROUND

- Early works include
 - Berger et al. (2001)
- Similar solutions have been proposed in vitreo-retinal surgery
 - Becker et al. (2010)
- Commercially available solutions
 - Navilas
- Previous work at JHU
 - Hybrid tracking and mapping for vitreoretinal surgery (Richa et al. 2012)

Asmuth et al. (2001)

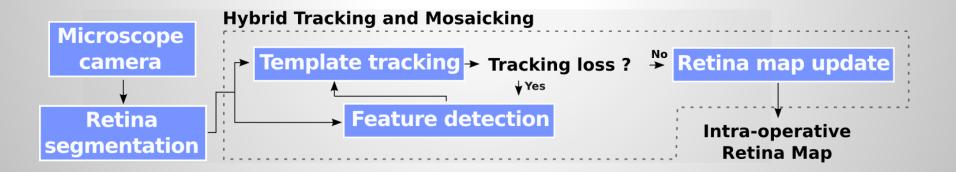



BACKGROUND

- Early works include
 - Berger et al. (2001)
- Similar solutions have been proposed in vitreo-retinal surgery
 - Becker et al. (2010)
- Commercially available solutions
 - Navilas

PÁGINA 9

- Previous work at JHU
 - Hybrid tracking and mapping for vitreoretinal surgery (Richa et al. 2012)

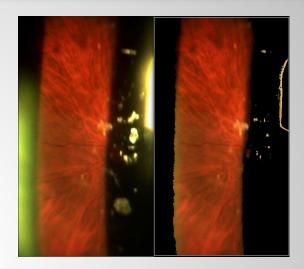

Becker et al. (2010)

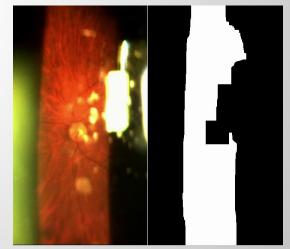
LAPIX

COMPONENTS

System components

- Retina segmentation
- Robust visual tracking
- Detection for tracking re-initialization
- Computational aspects





DATA

RETINA SEGMENTATION

- The retina must be segmented prior to tracking and detection
 - Segmentation: quality vs.
 computational effort
 - Current solution thresholding the balance of color components
 - Current research incorporation of multiple visual cues (texture)
 - Ensemble methods
 - SVMs
 - Polynomial Mahalanobis

a) INCoD

ROBUST VISUAL TRACKING

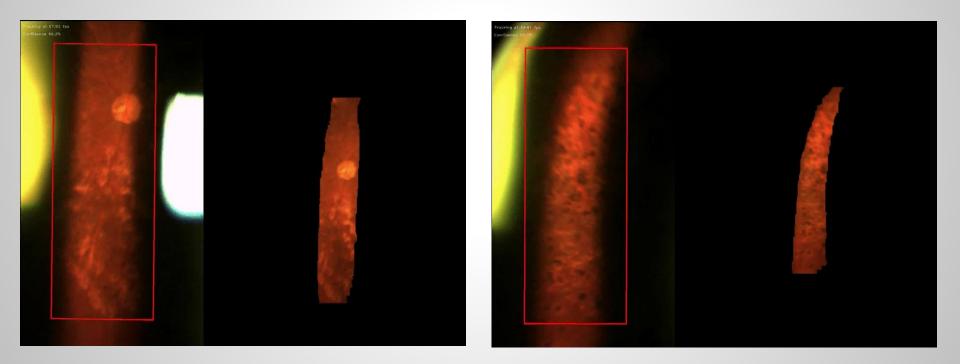
- Direct vs. feature-based visual tracking
 - Feature-based techniques show poor results
 - Repeatable patterns
 - Lack of distinguishable features
 - Blur
 - Direct visual tracking is sensible to illumination variations
 - Non-uniform illumination variations
 - Robust similarity measures are too computationally expensive to be locally applied

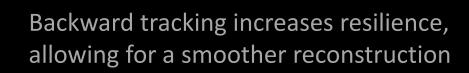
Retina tracking and mapping

DATA

ROBUST VISUAL TRACKING

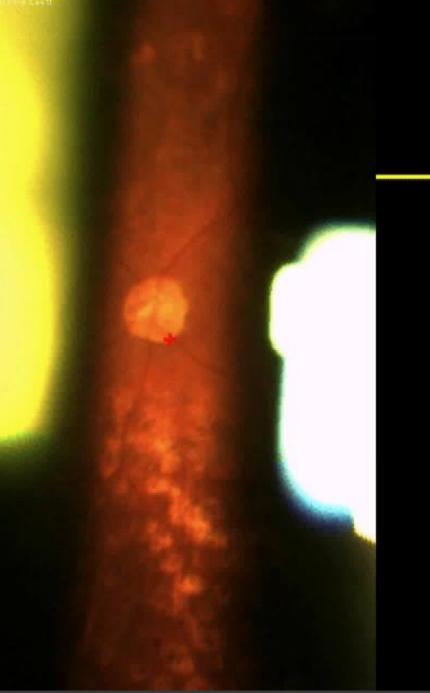
Tracking specifications


- Currently tracking rotation + translation (scaling is negligible)
- Tracking using SSD + illumination compensation
- A non-rigid illumination compensation model
 - Thin-plate spline surface to model gain variations
 - Global bias
- Forward-backward tracking
 - To increase robustness, we perform forward-backward tracking [Khalal2010]
 - Results with the highest NCC score are kept


ROBUST VISUAL TRACKING

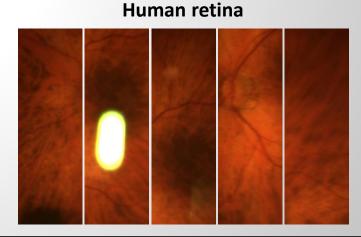
Forward-backward tracking

Due to the challenging visualization conditions, tracking is not smooth.



TRACKING RE-INITIALIZATION

- Tracking fails eventually (occlusions, patient motion)
 - How to restore tracking?
- First approach a feature map is created alongside the mosaic
 - Tested several approaches
 - SIFT, SURF, Ferns, Orb, Brisk ...
 - Conclusions:
 - Few distinguishable features on retina
 - Traditional feature detection/matching does not perform well

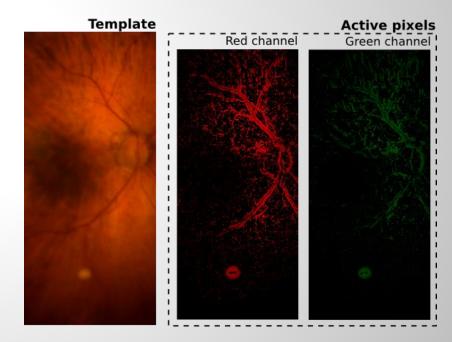

Feature-based tracking relocalization (SURF)

TRACKING RE-INITIALIZATION

- Inspired by SLAM re-localization [Lovegrove2011], we are currently researching into template matching approaches
- The characteristics of retinal images impose a different challenge

Rogerio Richa

LAPIX


Template-based tracking relocalization

Rogerio Richa | LAPIX

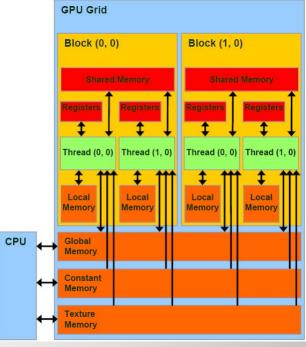
ROBUST VISUAL TRACKING

- Tracking quickly becomes computationally expensive
 320x240 px template = 76,800 pixels (x2 x2)
- Pixel selection is an alternative
 - Standard selection based on gradient magnitude leads to poor performance
 - Method proposed in [Meilland11] shows the best performance

COMPUTATIONAL ASPECTS

Can we operate at 60fps? (16.66 ms)

Insufficient performance on CPU


- I7 3.8GHz, 2.4GHz RAM
- \rightarrow maximum of 4 ESM iterations, 20% active pixels 550x180 px template
- \rightarrow that is ~4ms per iteration using 1/5 of the downsampled image
- \rightarrow multithreading with OpenMP
- Several operations can be parallelized
 - Image Warp
 - Sobel

COMPUTATIONAL ASPECTS

- Should we expect a x10 speed gain using GPUs? Not really...
- Same algorithm is faster on a GTX 680
 → For tracking 20k pixels (RG channels)
 - ~3.9ms on CPU
 - ~0.9 ms per iteration on GPU (x4 faster)
 - \rightarrow 720HD image upload to GPU takes 0.7 ms
 - \rightarrow Global memory is slow
 - \rightarrow Fermi vs Kepler architecture
 - \rightarrow We expect faster results in near future



CUDA architecture

CONCLUSION AND FUTURE WORKS

- Mosaicking the retina is not a simple task
- Current approach is promising but there are issues

CONCLUSION AND FUTURE WORKS

- Future work will focus on improving tracking and detection fronts
- Pre-op/Intra-op registration (e.g. fundus, angio ...)

Going beyond ...

- Control a multispectral illumination source to reduce phototoxicity
 - Epilepsy ?
 - Hardware development

Date 08/10/2013

THANK YOU FOR YOUR ATTENTION!

richa@incod.ufsc.br

