Redes Prontas e Treinadas
Compilações
- Discussão interessante: Top 10 Pretrained Models to get you Started with Deep Learning (Part 1 – Computer Vision) – Indica vários modelos e paltaformas, sem focar em nenhum.
Keras/Tensor Flow
- Keras implementation of RetinaNet object detection – https://github.com/fizyr/keras-retinanet
PyTorch
- Awesome-Pytorch-list (Redes, Tutoriais, Extensões e Bibliotecas) – https://github.com/bharathgs/Awesome-pytorch-list
- Pretrained ConvNets for pytorch: NASNet, ResNeXt, ResNet, InceptionV4, InceptionResnetV2, Xception, DPN, etc. – https://github.com/Cadene/pretrained-models.pytorch
- PyTorch – pretrained torchvision and Emotion Recognition examples – http://www.robots.ox.ac.uk/~albanie/pytorch-models.html
- https://github.com/pytorch/vision/tree/master/torchvision/models
DNN (OpenCV)
- nada ainda…
Outros
- Caffe Model Zoo – http://caffe.berkeleyvision.org/model_zoo.html
Imagens
- ImageNet Tree View
- COCO – Common Objects in Context
- The PASCAL Visual Object Classes
- Kitti Road dataset com download daqui
- Google Open Images Dataset V4
- Photo Aesthetics Ranking Network with Attributes and Content Adaptation
- AVA: A Large-Scale Database for Aesthetic Visual Analysis
- Stanford Background Dataset
- Sift Flow Dataset
- Barcelona Dataset
- Microsoft COCO dataset
- MSRC Dataset
- LITS Liver Tumor Segmentation Dataset
- Data from Games dataset
- Human parsing dataset
- Mapillary Vistas Dataset
- Microsoft AirSim
- MIT Scene Parsing Benchmark
- ADE20K Dataset
- INRIA Annotations for Graz-02
- Daimler dataset
- ISBI Challenge: Segmentation of neuronal structures in EM stacks
- INRIA Annotations for Graz-02 (IG02)
- Pratheepan Dataset
- Clothing Co-Parsing (CCP) Dataset
- Inria Aerial Image
- ApolloScape
- UrbanMapper3D
- RoadDetector
Fontes de Video
- Passagem de pessoas rua – http://www.cxtv.com.br/camera-ao-vivo/temple-bar
- Distante – http://www.cxtv.com.br/camera-ao-vivo/mashhad
- Mercado publico de Florianópolis, lateral e mesas – http://www.pmf.sc.gov.br/temporeal/
- Mirante da Lagoa da Conceição – http://maaxcam.com.br/
- Loja Japonesa – https://www.insecam.org/en/view/690554/ e http://www.svcl.ucsd.edu/projects/peoplecnt/
Datasets Gerais
Bases para Benchmarks e Competições
ImageNet
The ImageNet project is a large visual database designed for use in visual object recognition software research. The ImageNet project runs an annual software contest, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where software programs compete to correctly classify and detect objects and scenes.
PASCAL VOC – Visual Object Classes
The PASCAL VOC project: http://host.robots.ox.ac.uk/pascal/VOC/
- Provides standardised image data sets for object class recognition
- Provides a common set of tools for accessing the data sets and annotations
- Enables evaluation and comparison of different methods
- Ran challenges evaluating performance on object class recognition (from 2005-2012, now finished)
- Leaderboards for the Evaluations on PASCAL VOC Data
Pascal VOC data sets: Data sets from the VOC challenges are available through the challenge links below, and evalution of new methods on these data sets can be achieved through the PASCAL VOC Evaluation Server. The evaluation server will remain active even though the challenges have now finished.
Microsoft COCO – Common Objects in COntext
COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features: Object segmentation, Recognition in context, Superpixel stuff segmentation, 330K images (>200K labeled), 1.5 million object instances, 80 object categories, 91 stuff categories, 5 captions per image and 250,000 people with keypoints.
COCO:
- Site: http://cocodataset.org
- Artigo: Microsoft COCO: Common Objects in Context – Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, Piotr Dollár
- GitHub: https://github.com/nightrome/cocostuff
CIFAR-10 e CIFAR-100
CIFAR-10 e CIFAR-100 são subconjuntos anotados do 80 million tiny images dataset. Foram coletados por Alex Krizhevsky, Vinod Nair e Geoffrey Hinton.É usado como referência para treinamento de muitos modelos de CNNs.
- Site: https://www.cs.toronto.edu/~kriz/cifar.html
- Competição no Kaggle: CIFAR-10 – Object Recognition in Images
- Tutorial: Towards Data Science – CIFAR-10 Image Classification in TensorFlow
- Github: https://github.com/EN10/CIFAR
Google Open Images Dataset V4
Kaggle
Kaggle é uma comunidade internacional de cientistas de dados e pesquisadores em Aprendizado de Máquina, famosa por suas competições de aprendizado de máquina, onde problemas específicos com datasets associados são postados e times de diferentes instituições e empresas competem para tentar resolver. Passou também a oferecer uma plataforma pública para armazenamento de datasets e um ambiente de oficina de aprendizado de máquina baseado em nuvem. Me Março de 2017 Google anunciou a aquisição de Kaggle, que continua a operar nos antigos moldes.
- Site: https://www.kaggle.com/
- Competições: this was Kaggle’s first product and still what the site is most famous for. Companies post problems and machine learners compete to build the best algorithm. In addition, Kaggle also has:
- Kaggle Kernels: a cloud-based workbench for data science and machine learning. Allows data scientists to shore code and analysis in Python and R. Over 150K “kernels” (code snippets) have been shared on Kaggle covering everything from sentiment analysis to object detection.
- Datasets: community members share datasets with each other. Has datasets on everything from bone x-rays to results from boxing bouts.
- Kaggle Learn: cursos de IA de curta duração.
Alibabab Tianchi
Plataforma de Ciência de Dados e Aprendizado de Máquina do provedor de e-commerce Alibaba. Similar ao Kaggle, oferece competições, plataforma de deep learning, datasets, cursos e oportunidades de emprego.
- Site: https://tianchi.aliyun.com/
- Competições: https://tianchi.aliyun.com/competition/gameList.htm
- Plataforma de aprendizado de máquina: https://tianchi.aliyun.com/notebook/index.htm
InnoCentive
Empresa de inovação de crowdsourcing que também oferece competições e desafios similares ao Kaggle.
- Site: https://www.innocentive.com/
- Desafios/competições: https://www.innocentive.com/ar/challenge/browse
Copyright © 2018 Aldo von Wangenheim/INCoD/Universidade Federal de Santa Catarina